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ABSTRACT: Background: Treatments of freez-
ing of gait (FOG) in Parkinson’s disease are
suboptimal.
Objective: The aim of this study was to evaluate the
effects of multiple sessions of transcranial direct cur-
rent stimulation (tDCS) targeting the left dorsolateral
prefrontal cortex and primary motor cortex
(M1) on FOG.
Methods: Seventy-seven individuals with Parkinson’s
disease and FOG were enrolled in a double-blinded
randomized trial. tDCS and sham interventions com-
prised 10 sessions over 2 weeks followed by five
once-weekly sessions. FOG-provoking test perfor-
mance (primary outcome), functional outcomes, and
self-reported FOG severity were assessed.
Results: Primary analyses demonstrated no advan-
tage for tDCS in the FOG-provoking test. In second-
ary analyses, tDCS, compared with sham, decreased
self-reported FOG severity and increased daily living

step counts. Among individuals with mild-to-moderate
FOG severity, tDCS improved FOG-provoking test
time and self-report of FOG.
Conclusions: Multisession tDCS targeting the left
dorsolateral prefrontal cortex and M1 did not improve
laboratory-based FOG-provoking test performance.
Improvements observed in participants with mild-to-
moderate FOG severity warrant further investigation.
© 2021 International Parkinson and Movement Disor-
der Society
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Freezing of gait (FOG) is one of the most debilitating
Parkinson’s disease (PD) symptoms.1 Current treat-
ments are limited, and new therapies are needed.2–4 In
addition to subcortical dysfunction within the striatum
and cerebellar locomotor regions, recent studies suggest
that FOG is also associated with dysfunction within
prefrontal–cognitive and sensorimotor networks.3,5–9

Transcranial direct current stimulation (tDCS) modu-
lates the excitability of cortical neurons and their con-
nected neural networks.10–12 Pilot work suggests that
tDCS designed to facilitate the excitability of the pri-
mary motor cortex (M1) reduces FOG,13 that tDCS
targeting the left dorsolateral prefrontal cortex (dlPFC)
may improve executive function14 and gait under cogni-
tively demanding “dual-task” conditions,15 and that
tDCS may improve self-reported FOG severity.16 In a
pilot study that we conducted in 20 patients with PD
with FOG,17 a single session of tDCS that targeted both
the left dlPFC and M1 significantly reduced the severity
of FOG immediately after stimulation, compared with
M1 or sham stimulation. Based on this evidence and
the putative role of cognitive–motor links in FOG,1,3,18

we conducted a randomized-controlled trial to test the
hypothesis that a multisession tDCS intervention that
targets the left dlPFC and M1 would reduce FOG and
improve related outcomes.
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Patients and Methods

A sham-controlled, double-blinded, randomized trial
was conducted (ClinicalTrials.org: NCT02656316).
After providing informed written consent, 77 subjects
completed the baseline assessment and were random-
ized to either tDCS or sham stimulation (Supporting
Information Figs. S1 and S2), stratified by site and sex.
The tDCS intervention was designed to facilitate the
excitability of the left dlPFC and the bilateral leg region
of M117 (Supporting Information Fig. S3). Subjects in
each arm underwent an intensive phase of 10 stimula-
tion sessions over 2 weeks, followed by a “mainte-
nance” phase of once-weekly sessions for 5 weeks.
Follow-up assessments were performed after the inten-
sive phase, after the maintenance phase, and 5 weeks
later (10-week follow-up; Supporting Information
Fig. S2). Motivated by the positive effects of our pilot
study,17,19 the primary FOG outcome was the FOG-
provoking test performance score (FOG severity score)
after the intensive phase (ie, after 10 sessions of tDCS
given over 2 weeks) in the on medication state.19 Sec-
ondary outcomes included additional measures derived
from the FOG-provoking test (ie, FOG episodes num-
ber, percentage total test time frozen, and total time to
complete the test20), the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale, Part III,21 the
Timed Up and Go,22 a computerized executive function
battery (Neurotrax Inc.),23 and an accelerometer that
captured 7-day daily living step counts.24 If patients
agreed, the assessment was also completed in the off
medication state for exploratory analyses. Mixed-effects
negative-binomial regression models evaluated the pri-
mary outcome and other measures derived from the
FOG-provoking test. See Supporting Data for addi-
tional details.

Results

The tDCS and sham groups were similar in age, sex
distribution, education, body mass index, and years
since PD diagnosis (Supporting Information Tables S1
and S2). The FOG severity score and the average num-
ber of identified FOG episodes experienced during the
FOG-provoking test were noticeably higher in those
randomized to tDCS compared with sham (Table 1).
All subsequent statistical analyses considered these
baseline measures. Retention to the assessment immedi-
ately after the intensive phase (the primary endpoint)
was high (97%), with no significant differences between
treatment arms for the side effects which were transient
and mild (Supporting Information Figs. S1 and S4).
Blinding was achieved; the proportion of participant
guesses regarding whether they received real or sham
stimulation was not statistically different between

groups (tDCS: 49% guessed tDCS; sham: 35% guessed
tDCS; P = 0.77).

Effects of tDCS on FOG-Provoking Test
Outcomes

In the tDCS arm, the median FOG severity score was
15 at baseline and 12, 12, and 10 at the immediate,
5-week, and 10-week follow-ups, respectively (Table 1).
Similar trajectories were observed for the other second-
ary outcomes derived from the FOG-provoking test
(Table 1). Nonetheless, neither model-adjusted nor
unadjusted comparisons of change in FOG severity score
showed statistically significant differences between the
tDCS and sham groups at the three follow-up evaluations
(all P > 0.11).

Secondary Outcomes
More participants reported a reduction in FOG sever-

ity on a Likert global impression scale in the tDCS
group than in the sham group (58% vs. 35%;
P = 0.05; Fig. 1). Compared with sham, tDCS also
increased daily living step counts from baseline to the
immediate (P = 0.04) and 10-week follow-up
(P = 0.03) assessments. tDCS did not offer statistically
significant advantage over sham stimulation on other
secondary outcomes.

Influence of Baseline FOG Severity
Because participants had a wide range of FOG sever-

ity at baseline and previous work suggested that indi-
viduals with more advanced FOG may be less
responsive to interventions,26–28 we conducted explor-
atory analyses stratifying participants into mild-to-
moderate and severe FOG subgroups (based on tertiles
of baseline FOG-provoking score). In participants with
mild-to-moderate FOG severity (baseline FOG severity
score < 16), tDCS compared with sham resulted in a
10% reduction in the total time taken to complete the
FOG-provoking test at the immediate follow-up (means
ratio = 0.9; 95% confidence interval = 0.8–1.0;
P = 0.048) (Supporting Information Fig. S5 and
Table S4). The effects of tDCS on the number of FOG
episodes and percent time frozen were not significant
(Supporting Information Fig. S5 and Table S4). In par-
ticipants with mild-to-moderate FOG severity, those
who received tDCS as compared with sham self-
reported greater improvement in FOG severity after the
intensive intervention (Likert global impression scale;
P = 0.05). In this subgroup, tDCS was also associated
with a reduction (P = 0.03) in the new freezing of gait
questionnaire total score at the 10-week follow-up
(Supporting Information Table S4). No other group
differences in the change from baseline to any follow-
up assessment were observed. For the most severe
FOG tertile group, unadjusted and adjusted analysis of
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FOG-provoking test performance and self-reported
FOG severity revealed no significant effects of the inter-
vention on any outcome (Supporting Information
Table S5 and Fig. S5).

The Off Medication State
Exploratory analyses of the off medication data

suggested no association between the tDCS intervention
and any outcome measures in the subgroup of partici-
pants who agreed to be tested in the off medication
state (Supporting Information Table S6).

Discussion

The 2-week tDCS intervention followed by five once-
weekly booster sessions did not significantly reduce the
severity of FOG observed during an in-laboratory
FOG-provoking test, over and above that of the sham
intervention, in contrast with the pilot results.17 The
primary outcome was not met. This suggests that tDCS
did not induce permanent changes in brain function
sufficient to create a measurable reduction in FOG
severity across the entire cohort.
Secondary analyses suggested that as compared with

sham, tDCS resulted in greater participant-reported
improvement in FOG severity immediately after the
intensive phase, as well as greater daily living step
counts at both the immediate (ie, after 2 weeks of stim-
ulation) and 10-week follow-ups. Exploratory analyses
also revealed that the time to complete the FOG-
provoking test improved specifically among those

participants with mild-to-moderate FOG severity at
baseline (FOG severity score < 16). Such results were
not observed in participants with more severe FOG.
Thus, despite lack of observed benefit on the primary
FOG outcome, continued study of tDCS may be
warranted, particularly in patients who suffer from
relatively mild-to-moderate FOG.
Although tDCS did not affect FOG-provoking test

performance, it was associated with reduced self-
reported FOG severity immediately after the interven-
tion. This discrepancy between in-laboratory tests and
self-report is not surprising because low correlations
between the two forms of evaluation have been
reported previously.20,29 Although self-reported out-
comes may be prone to relatively large test–retest
error,29 these results suggest that tDCS might be able to
positively impact FOG, but that a larger “dose” (ie, the
number, intensity, and/or frequency of stimulation ses-
sions) may be needed to induce larger between-group
changes within laboratory-based FOG-provoking tests.
Future trials should consider the use of longer interven-
tions, additional methods of capturing FOG including
the percent of freezing during daily living activities,30,31

and diaries by participants and/or their caregivers.32

The tDCS group exhibited evidence of increased daily
living step counts (after 2 weeks of stimulation and
10 weeks later), as compared with the sham group.
Conclusions regarding the retention of observed imme-
diate effects are limited by smaller sample sizes at later
assessments, and the clinical meaningfulness of changes
in daily living step counts has not yet been established
for PD. Future work should also check that these
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FIG. 1. The effects of transcranial direct current stimulation (tDCS) or sham stimulation on self-reported severity of freezing of gait (FOG). Participants
were asked to rate their change in FOG severity using a Likert scale ranging from �3 (significantly worsened) to +3 (significantly improved), with 0 indi-
cating no change. The tDCS intervention, as compared with sham, was associated with greater percentage (y axis) of participants reporting improve-
ment in FOG at the immediate follow-up (P = 0.05), yet not at the 5-week or 10-week follow-up. Very similar results (P = 0.045) were obtained using
the Wilcoxon test, which treats the values as a numeric Likert score.
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increases do not simply reflect FOG (see Supporting
Data). Still, these results provide preliminary evidence
of a potential way to improve physical activity in this
population who suffer from sedentary lifestyles.
Exploratory analyses revealed that the tDCS interven-

tion appeared to reduce self-reported FOG severity,
increase daily living step counts, and potentially
improve FOG-provoking test performance in those with
mild-to-moderate FOG severity (changes that were sim-
ilar to those observed among all subjects), but not in
those with severe FOG. This observation is consistent
with the possibility that earlier treatment may lead to
better outcomes and that mild FOG may be relatively
more responsive to therapy.26–28 Perhaps, patients with
more severe disease and associated neurodegeneration
may not be able to respond to tDCS. Alternatively, they
may require a larger dose than that provided in the cur-
rent trial. Also, different mechanisms may drive mild-
to-moderate FOG as opposed to advanced FOG.33,34

Future studies using noninvasive brain stimulation
should consider tailoring the tDCS to FOG severity,
stratifying by disease severity, or focusing exclusively
on patients with mild-to-moderate FOG. Additional
research is needed to address these issues.
tDCS was designed to simultaneously facilitate the

excitability of the left dlPFC and the leg regions of M1.
Although this intervention may have benefited some
aspects of motor function (eg, step counts), positive
effects on executive function were not consistently
observed. Targeting additional or other cortical net-
works that have been implicated in FOG, including the
limbic34–36 and/or cerebellar locomotor networks,8,37

may thus be needed to exert an optimal effect on FOG.
Future trials may also consider using tDCS optimiza-
tion techniques to tailor interventions to individual
brain anatomy38,39 and consider possible effects of
peripheral nerve stimulation.40

The tDCS intervention was well tolerated and well
attended within the intensive 2-week phase. Although
some participants did not complete later follow-ups
(Supporting Information Fig. S1), loss to later follow-
up was largely similar across arms (Supporting Infor-
mation Table S3). Eligibility criteria resulted in larger-
than-expected interparticipant variance in baseline
FOG severity, as well a percentage of participants who
exhibited minimal FOG episodes within the baseline
FOG-provoking test. Larger trials should carefully con-
sider eligibility criteria and the stratification of random-
ization (beyond only site and sex as done in the current
trial because of sample size constraints) to ensure bal-
ance between arms. This trial provides preliminary data
suggesting that multitarget tDCS is safe, and that multi-
ple sessions may potentially improve FOG-related out-
comes. Nonetheless, additional research is needed to
optimize tDCS and determine if and in whom this form
of brain stimulation ameliorates FOG.
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